Detecting Concerted Demographic Response across Community Assemblages Using Hierarchical Approximate Bayesian Computation

Yvonne L. Chan,1,2*, David Schanzenbach,2 and Michael J. Hickerson3,4
1Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Manoa
2Cyberinfrastructure, University of Hawai‘i at Manoa
3Biology Department, City College of New York
4The Graduate Center, City University of New York
†Present address: Department of Genetics and Bioinformatics, Swedish Museum of Natural History, Stockholm, Sweden
*Corresponding author: E-mail: ylhchan@hawaii.edu.
Associate editor: Noah Rosenberg

Abstract

Methods that integrate population-level sampling from multiple taxa into a single community-level analysis are an essential addition to the comparative phylogeographic toolkit. Detecting how species within communities have demographically tracked each other in space and time is important for understanding the effects of future climate and landscape changes and the resulting acceleration of extinctions, biological invasions, and potential surges in adaptive evolution. Here, we present a statistical framework for such an analysis based on hierarchical approximate Bayesian computation (hABC) with the goal of detecting concerted demographic histories across an ecological assemblage. Our method combines population genetic data sets from multiple taxa into a single analysis to estimate: 1) the proportion of a community sample that demographically expanded in a temporally clustered pulse and 2) when the pulse occurred. To validate the accuracy and utility of this new approach, we use simulation cross-validation experiments and subsequently analyze an empirical data set of 32 avian populations from Australia that are hypothesized to have expanded from smaller refugia populations in the late Pleistocene. The method can accommodate data set heterogeneity such as variability in effective population size, mutation rates, and sample sizes across species and exploits the statistical strength from the simultaneous analysis of multiple species. This hABC framework used in a multitaxa demographic context can increase our understanding of the impact of historical climate change by determining what proportion of the community responded in concert or independently and can be used with a wide variety of comparative phylogeographic data sets as biota-wide DNA barcoding data sets accumulate.

Key words: comparative phylogeography, approximate Bayesian computation, historical demography, response to climate change.

Introduction

Fluctuations in climate during the Quaternary resulted in widespread expansions and contractions of ice sheets, regional shifts in temperature and precipitation, and changes in sea levels and sea surface temperatures (Yu and Eicher 1998; Cutler et al. 2003; Pahnke et al. 2003). These fluctuations brought about profound changes in population sizes, species range distributions, and geographic patterns of genetic diversity in nearly all species (Graham et al. 1996; Comes and Kadereit 1998; Dynesius and Jansson 2000; Hewitt 2000, 2004; Davis and Shaw 2001; Hill et al. 2011). Characterizing the complex dynamics and aggregate demographic histories associated with expansions and contractions of large species assemblages is a daunting yet vital component of learning how climatic change can drive patterns of meta-community assembly in various regions (HilleRisLambers et al. 2012).

Despite the large number of phylogeographic studies examining species response to historical changes that have emerged since the field’s inception in the 1980s, there remains a pressing need for the integration of multispecies data sets within a cohesive statistical framework (Knowles 2009). Methods that use genetic data from whole assemblages can then be used to determine the community-level patterns of both individualistic and aggregate responses to climate cycles. Although community-level inference (Taberlet et al. 2002; Soltis et al. 2006; Drew and Barber 2012; Wood et al. 2012) from aggregate parameter estimates from each species and/or qualitative comparisons of phylogenetic trees or phylogeographic networks from each species can provide useful inferences about community responses to changes in climate and landscape (Sullivan et al. 2000; Soltis et al. 2006), a unified statistical framework that can pool information across species would be broadly beneficial.

In this study, we present a new and generally applicable multispecies population genetic method that is suitable for aggregate demographic histories of any community provided...
the availability of population-level sampling of single locus data across codistributed species. This general method can potentially make use of the plethora of data from nearly 25 years of phylogeographic studies (Hickerson et al. 2010) and mitochondrial DNA (mtDNA) barcode initiatives (17,505 chordate species; Ratnasingham and Hebert 2007, as of May 2014).

Under this strategy, this multitaxon statistical framework makes community-level inference while accommodating coalescent, mutational, and demographic variance associated with individual species and loci (Beaumont 2010; Morgan et al. 2011) and gains statistical strength from pooling data for a single analysis (Beaumont and Rannala 2004). Specifically, our multitaxon statistical framework uses hierarchical approximate Bayesian computation (hABC). Under complex models that make calculating the likelihood function difficult, ABC uses a comparison of observed to simulated summary statistics to sidestep the calculation of the likelihood function and develop approximate likelihoods for model choice and parameters (Sunnäker et al. 2013). hABC is an ABC extension of any hierarchical Bayesian model where multiple parameters are structured into multiple dependent levels whereby observable outcomes are modeled conditional on certain parameters, which themselves are given probabilistic specification in terms of higher level parameters, known as hyperparameters (Gelman et al. 2004). Hierarchical models are particularly useful when there are a number of quantities such as loci or populations, and it is unknown whether they should be parameterized the same way or independently (Beaumont 2010).

However, up to now, most hABC studies in a comparative phylogeographic context focused on studies of codivergence (Hickerson and Meyer 2008; Caraval et al. 2009; Barber and Klicka 2010; Morgan et al. 2011) and local adaptation (Bazin et al. 2010). The method we introduce here is the first multispecies coalescent model-based method for the demographic inference of coordinated and/or independent multipopulation expansion histories, thereby allowing large-scale inferences relevant to questions about community assembly and variable responses to future climate changes.

The hABC Approach

Approximate Bayesian computation is particularly well suited to address the complexity of communities and natural populations where evaluation of the likelihood function is difficult (Csilléry et al. 2010). Often based on the rejection algorithm (Tavare et al. 1997; Pritchard et al. 1999), it involves the simulation of large numbers of data sets under different hypothesized scenarios with parameter values drawn from a prior. Simulated and observed data sets are reduced to summary statistics and then posterior probability distributions are approximated from the comparisons between the simulated and observed summary statistics. Although it has been used frequently in population and evolutionary genetics to estimate species-specific parameters such as effective population size and past demographic events such as growth, decline, and migration under complex demographic histories (Beaumont 2010), its application to community-wide dynamics is relatively recent (Hickerson et al. 2006) where it has been used to test for simultaneous divergence among sister taxa. Here, we infer community-wide dynamics based on a demographic history of concerted response. Our goal was to provide a tool to determine what proportion of a community responded simultaneously to a hypothesized historical event, such as a sea level change or expansion out of refugia, and to estimate the timing of the response.

We present an hABC scheme for detecting the presence and timing of multispecies coexpansion pulses at the time scale of the late Quaternary (table 1). We harness this approach to infer the proportion of a contemporary community that coexpanded simultaneously, as well as when that expansion occurred. Rather than compiling and qualitatively comparing a set of single-species inferences, this hABC method allows estimation of hyperparameters that quantify multispecies patterns, such as synchronicity in expansion time. By combining the data in a single hierarchical Bayesian analysis, we incorporate uncertainty in the amount of dependency among taxon-specific parameters, thereby allowing for both historical congruence and demographic independence across taxa (Beaumont 2010).

First, we apply the hABC framework in extensive simulation experiments to validate the method and to examine the robustness of our model estimates and parameter estimation to different sizes of community samples and maximum expansion times. We introduce a model index hyperparameter of community congruence \(\zeta \), which ranges from complete simultaneous expansion (\(\zeta = 1.0 \)), where all \(n \) species expanded at the same time \(\tau \), to random expansion (\(\zeta = 0.0 \)), where each of the \(n \) species expanded independently at times \(\tau_i \). For intermediate models, \(\zeta \) is proportional to the number of species that coexpand synchronously with \((1-\zeta) \) being proportional to the number of species that expand individually at random times \(\tau_i \). All populations have a demographic model that consists of a contemporary effective size of \(N_i \) that is independently drawn from a uniform prior \(U(N_{\text{min}}, N_{\text{max}}) \), with every population instantaneously expanding from populations that are a fraction of their current size \(e_i \) chosen from a uniform prior of expansion magnitudes \(U(e_{\text{min}}, e_{\text{max}}) \) at times \(\tau \), or \(\tau_i \), that have a uniform prior distribution of \(U(\tau_{\text{min}}, \tau_{\text{max}}) \) (fig. 1). Although each of the \(n \) taxa’s effective population size \(N_i \) and expansion magnitude \(e_i \) are free to vary, the method allows estimating the following: 1) \(\zeta \), the proportion of the \(n \) taxa that synchronously expand; 2) \(E(\tau) \), the mean expansion time of \(n \) taxa; 3) \(\tau \), the coexpansion time of the synchronous taxa; and 4) the dispersion index of all \(n \) expansion times, \(\text{Var}(\tau)/E(\tau) \).

To demonstrate the method’s bias and accuracy given that the model is correct, we performed a series of cross-validation tests by simulating data sets having fixed values for the community congruence hyperparameter index \(\zeta \) (pseudo-observed data sets [PODs]; Bertorelle et al. 2010) and subsequently estimating \(\zeta, E(\tau), \tau, \) and \(\text{Var}(\tau)/E(\tau) \) using the ABC accept–reject method. To investigate the method’s performance when the model is incorrect (i.e., model generating the data differs from the model used for inference) and if such incorrect models could possibly be detected prior to
applying our model, we simulated PODs from communities that differed from our coexpansion and random expansion community by including nonexpanding populations, declining populations, and multiple congruent pulses, and performed graphical checks using principal component analysis (PCA) given the PODs and data sampled from the hyperprior.

Finally, we apply this method to an empirical data set of 32 avian populations from Australia to determine how many bird species coexpanded simultaneously and the timing of any coexpansion. We validate our estimates with PODs formed from a community of populations, and multiple congruent pulses, and per-

Results
Cross-Validation of hABC Method
Sensitivity analyses to the size of the community (10 vs. 50 species) and the time frame (maximum expansion time \(\tau_{\text{max}} = 100,000 \) or 500,000 years before present) show that, as expected, the estimates of mean time \(E(\tau) \) and dispersion index of time \(\text{Var}(\tau)/E(\tau) \) are substantially more accurate when a greater proportion of the taxa are coexpanding (fig. 2 and table 2). In addition, although the number of taxa sampled from a community (10 vs. 50) does have a strong effect on being able to test for synchronous or asynchronous coexpansion, the timeframe is much less so.

Model assumptions are an important component of all model-based methods (Csilléry et al. 2010), therefore we examined the behavior of three sets of PODs with key differences from the model used to generate prior samples contained in the reference table. These three sets of PODs were generated under the following three models: 1) “constant”—15 taxa expansion at the same time and 35 taxa with zero population growth; 2) “declining”—15 taxa expansion at the same time and 35 taxa declining to one-tenth their original size at random times; and 3) “two pulse”—15 taxa expansion at 30,000 generations before present and 35 taxa expansion at 90,000 generations before present. Using PCA, we compared data generated from each of these models to data generated from a model with 15 species coexpanding at a single time and 35 species expanding at independent times (i.e., \(\zeta = 0.3 \)) and expansion magnitudes \(\varepsilon_i \) drawn from the uniform prior \(U(\varepsilon_{\text{min}}, \varepsilon_{\text{max}}) \).

Using PCA as a graphical check to compare the PODs and data generated from the prior, we found that data generated from the constant and declining models can be detected with PCA to be a poor fit for hABC analysis under our coexpansion model (fig. 3A and B). In contrast, this PCA technique suggested that data generated from the two-pulse model were not found to be distinguishable from data generated from our single pulse \(\zeta = 0.3 \) model (fig. 3C).

Table 1. Hierarchical Approximate Bayesian Computation Procedure Outlined for Comparative Phylogeographic Inference of Concerted Demographic Response.

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Draw hyperparameter value from prior</th>
<th>Draw taxon-specific parameter values from prior</th>
<th>Simulate data for each taxon and calculate summary statistics</th>
<th>Calculate hypersummary statistics</th>
<th>Accept/Reject</th>
<th>Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate the proportion of (n) taxa that coexpanded synchronously ((\zeta))</td>
<td>For each data set of (n) taxa, draw a value of (\zeta) representing (</td>
<td></td>
<td>n^c</td>
<td></td>
<td>) taxa that are coexpanding synchronously across (n) taxa</td>
<td>Draw an expansion time (\tau_a) and for each (</td>
</tr>
</tbody>
</table>
and expands instantaneously from a population of 32 taxa at time τ_0 (95% quantiles = 10–32). The mode for the mean expansion time $\langle \tau \rangle$ was 8 taxa expanding synchronously at time τ_s and 24 taxa expanding at random times τ_r with the expansion times drawn from priors $\Pr(\tau_s) \propto U(1,000, 200,000)$ generations ago. Each estimate of ζ for each POD is based on a set of 1,000 acceptances from a reference data table of 6.6 million simulations with ζ drawn from the discrete uniform hyperprior of $\Pr(\zeta) = \{0.0, 1/32, \ldots, 31/32, 1.0\}$. In this case, the reference table consists of 200,000 data sets simulated from each of the 33 possible values of the hyperprior ζ ranging from 0 to a total of 32 populations expanding concomitantly with parameters for each population drawn from species-specific priors. The cross-validation PODs and error estimates demonstrate that the hABC method can potentially obtain accurate estimates of ζ, $\langle \tau \rangle$, τ_s, and $\Var(\tau)/\langle \tau \rangle$.

As a heuristic approach to identify which 10–32 of the 32 avian populations coexpanded, we subsequently conducted an exploratory PCA. Specifically, we chose a cluster of 26 populations plotted on the first two components to identify a putative subset of populations that synchronously coexpanded (fig. 7C). We then assessed whether this subset of populations have data that are consistent with a history of temporal coexpansion by running an hABC analysis with a new reference table and observed summary statistic vector D regenerated from the subset of 26 populations corresponding to the PCA cluster. The estimates of ζ, $\Var(\tau)/\langle \tau \rangle$, and τ_s on this subset yield strong support for complete synchronous coexpansion (mode estimate of $\zeta = 0.95$, fig. 7) and τ_s is consistent with the estimate of coexpansion time derived from the previous analysis (mode estimate of 32 populations $\tau_s = 35,225$ vs. mode estimate of 26 populations $\tau_s = 33,465$, 95% quantiles = 26,059–50,961; fig. 7).

Discussion

The prevalence of shallow mtDNA genealogies found in many terrestrial and marine communities (Grant and Bowen 1998; Hewitt 2000) suggests that there may appear to be widespread temporally and spatially shared responses of communities to Pleistocene environmental fluctuations such as sea level changes or glacial retreats. A statistical framework to test this hypothesis at the multispecies level will enable community-level inference for understudied groups and across whole biota. In contrast to previous applications of hABC to comparative phylogeographic data sets which sought to quantify support for models of vicariance or dispersal (Hickerson and Meyer 2008) or test for synchronous isolation (Huang et al. 2011), the method we present here enables quantifying the amount of temporal congruence in demographic coexpansion across species. Discerning whether species respond in concert or individually to historical changes in climate and landscape is important with respect to understanding the biogeographic dynamics of future climate changes, invasions, and extinction (Lavergne et al. 2010).
Although we focus on comparative demographic inference, interpretations from this method could focus on demographic histories of matrilineages or selective sweeps accompanied by hitchhiking (Gillespie 2001; Bazin et al. 2006).

This general method and downstream extensions will be able to be deployed on the wealth of mtDNA, single-copy nuclear DNA, and chloroplast spacer regions that have become available for animals, plants, protists, and fungi over the last quarter of a century for phylogeographic (Soltis et al. 2006) and mtDNA studies (Ratnasingham and Hebert 2007), as well as newly available ancient DNA data (Ramakrishnan and Hadly 2009; Ho and Gilbert 2010; Lorenzen et al. 2011). Even if only a single genealogical sample is available from each animal species, the opportunity to sample this locus within communities across wide taxonomic breadth enables researchers to make regional-scale inferences of how whole assemblages responded to the cyclical climate changes of the Pleistocene, all while accounting for the variability associated with using a single locus per species.

The demographic model involves synchronous and asynchronous expansion where each taxon consists of a single panmictic population that is expanding. Although heterogeneity in sample size, sequence length, mutation model, and generation time, are incorporated into the simulations and taxon-specific parameters such as mutation rate and effective population sizes are allowed to freely and independently vary across taxa, we suggest that when applying this method, taxa/populations should be chosen that are likely to be panmictic. If taxa are found to have population structure, the data set can be divided into populations and each subset included separately in the analysis, although one should be cautious in cases where there are an unknown number of unsampled ghost populations that could cause distortions in inference (Heller et al. 2013). As with other model-based methods, it is important to perform model-checking procedures, such as posterior predictive checks and cross-validation simulation experiments, to determine whether parameters can be accurately estimated given the empirical data (Gelman et al. 2004; Csilléry et al. 2010).

To examine the robustness of our model estimation procedure, we quantified the impact of the prior on posterior distributions, parameter inference, and model choice (Gelman et al. 2004). We found that the timescale of the prior had little influence on the model choice or parameter estimation but that error rates for model choice were lower with 50 species compared with 10 species (table 2). To determine goodness-of-fit and examine whether misspecified

Table 2. Comparison of Different Numbers of Species and Expansion Time Priors Indicates that Using Greater Numbers of Species Lowers the Error in Detecting Simultaneous Expansion.

<table>
<thead>
<tr>
<th>True Model (ζ)</th>
<th>Number of Species</th>
<th>Error Rate (majority)</th>
<th>Error Rate (Bayes factor threshold > 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ = 0.0</td>
<td>10 species</td>
<td>0.08</td>
<td>0.29</td>
</tr>
<tr>
<td>ζ = 1.0</td>
<td>10 species</td>
<td>0.30</td>
<td>0.62</td>
</tr>
<tr>
<td>ζ = 0.0</td>
<td>50 species</td>
<td>0.07</td>
<td>0.30</td>
</tr>
<tr>
<td>ζ = 1.0</td>
<td>50 species</td>
<td>0.28</td>
<td>0.60</td>
</tr>
<tr>
<td>ζ = 0.0</td>
<td>100,000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ζ = 1.0</td>
<td>100,000</td>
<td>0.03</td>
<td>0.14</td>
</tr>
<tr>
<td>ζ = 0.0</td>
<td>500,000</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>ζ = 1.0</td>
<td>500,000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note.—Error rates are calculated using either the majority of posterior samples or the Bayes Factor that compares the posterior weights of ζ = 0.0 and ζ = 1.0. Errors were determined from estimates of PODs generated under ζ = 0.0 and ζ = 1.0 for communities of 10 and 50 species and τ_max of 100,000 and 500,000 generations.
models (i.e., when the actual model generating the data does not match the model used for inference) could be detected, we performed graphical model checking on PODs from constant, declining, and two-pulse models. We found that a PCA comparing summary statistics calculated from PODs generated from these alternative models and summary statistics calculated from data generated from random draws from the prior model used for inference (i.e., our expansion model) was effective for identifying cases of poor model fit for the constant and declining population models. However, in cases where the data are generated under a two-pulse model, one can first use our method to detect asynchronous coexpansion and subsequently explore running the framework on subsets of the data to identify multiple pulses of coexpansion.

To minimize bias introduced by violations of the assumption of panmictic populations, we demonstrate the method on an avian assemblage from Australia, where species typically have high dispersal and consequently simplified patterns of population structure. In Australia, many common widespread species across the continent may have had assemblage-wide bottlenecks in response to widespread climatic events in the late Pleistocene, and our method suggests that a subset of populations potentially coexpanded 26,000–51,000 generations ago, coinciding with Marine Isotope Stage 3, a highly variable climatic period.

Although hABC enabled the estimation of the number of species in the Australian data set that share congruent demographic dynamics, the identification of individual species by PCA shown here is heuristic, and there are likely to be other subsets that may also yield high posterior probability of synchronous coexpansion. Beyond such exploration with PCA, one could examine parameter estimates from individual species analysis using Bayesian skyline plots or mismatch distribution methods. Whatever method is used, the primary goal is to identify cases of poor model fit and explore the implications of such fits for the interpretation of the data.

Fig. 3. Projection of the summary statistics calculated from 100 PODs from constant, declining, and two-pulse models. (A) Constant: 15 species expanding congruently at 1,000–100,000 generations before present and 35 species not expanding. (B) Declining: 15 species expanding congruently at 1,000–100,000 generations before present and 35 species declining at 1,000–100,000 generations before present. (C) Two-pulse model that included 35 species expanding congruently at 30,000 generations before present and 15 species expanding congruently at 90,000 generations before present; and 100 samples from the hyperprior of the expansion model where 15 species are expanding congruently at 1,000–100,000 generations before present and 35 are expanding at random times 1,000–100,000 generations before present onto the first two axes of a PCA.
used to identify the individual species, the subset of congruent species can then be verified with an hABC analysis on the putative subset and with resulting parameter estimates of $\zeta \approx 1.0$ and $\text{Var}(\tau)/\text{E}(\tau) \approx 0$ providing confirmation that the subset of species expanded synchronously, although competing models with alternate subsets may be unidentifiable given single locus mtDNA data.

We model an assemblage history that involves one synchronous expansion plus a group of asynchronous expansions, although future approaches could incorporate more than one synchronous expansion pulse and/or pulses or contraction pulses. The use of a more realistic model of population growth such as an exponential model may also improve inference, although our instantaneous model is likely to capture the effects of an exponential model (Rogers and Harpending 1992). Greater model complexity may also be accommodated by the incorporation of high throughput population genomic data obtained from next-generation sequencing technology.

Conclusion

We present a new hABC method for demographic inference and testing community response to climate change. This framework enables the estimation of the proportion of the present-day community that expanded in a single pulse in the past and will further aid in fitting predictive species distributional models of shared demographic and distributional changes (Lorenzen et al. 2011; Prunier et al. 2012). We test this method on an empirical data set of avian populations from Australia and demonstrate our ability to detect and estimate the timing of the expansion pulse. This method could help test macroecological hypotheses of community assembly (Weiher et al. 2011) and identify different responses by different ecological guilds or interacting species (Emerson and Gillespie 2008; Mikhayev et al. 2008; Stone et al. 2012). Overall, this approach can be extended to enable detecting forces underlying regional biodiversity patterns and provide a greater understanding of how changes in historical
expanded asynchronously and a synchronous pulse of coexpansion in a subset of the populations. The posterior of \(\var(z) \) with a mode between 0.7 and 0.8 and \(\text{Var}(\tau)/E(\tau) \) +0.0 indicates a mixed history that includes populations that expanded asynchronously and a synchronous pulse of coexpansion in a subset of the populations.

Figure 5. Posterior estimates of model index of community congruence hyperparameter \(\zeta \) (panel A) and parameter summaries time dispersion index \(\text{Var}(\tau)/E(\tau) \) (panel B), total mean expansion time \(E(\tau) \), and coexpansion time \(\tau \) (panels C and D) conditional on data from 32 Australian avian populations. The posterior of \(\zeta \) with a mode between 0.7 and 0.8 and \(\text{Var}(\tau)/E(\tau) \) +0.0 indicates a mixed history that includes populations that expanded asynchronously and a synchronous pulse of coexpansion in a subset of the populations.

Environmental features differentially affected species distributions (Hickerson et al. 2010; Emerson et al. 2011).

Materials and Methods

The hABC Model

Similar to the hierarchical Bayesian formulation of Ilves et al. (2010), which was used to estimate the proportion of taxon pairs that arose by way of colonization rather than "soft vicariance," our objective here is to estimate the community congruence hyperparameter \(\zeta \), the proportion of \(n \) taxa that coexpanded in a single synchronous cluster. A flow chart of our method is outlined in table 1. The hierarchical structure of the model is such that the data \(D \) is conditional on species-specific parameters \(\phi \) and \(\tau \), whereby the expansion time parameters \(\tau_i \) for \(i = 1, 2, \ldots, n \) species are conditional on \(\zeta \), whereas the other species-specific parameters \(\phi_i \) (\(\mu_i \), \(N_i \), and \(\varepsilon \)); mutation rates, current effective population sizes, and expansion magnitudes, respectively) are assigned to \(i = 1, 2, \ldots, n \) species independent of \(\zeta \). Under this scheme, the posterior distributions of the parameters given the data are \(\pi(\zeta, \tau | D) \times P(D | \zeta, \tau) \pi(\tau | \zeta) \pi(\zeta) \) and \(\pi(\phi | D) \times P(D | \zeta, \tau, \phi) = P(D | \phi, \tau) \pi(\phi) \pi(\tau | \zeta) \pi(\zeta) \). The community congruence hyperparameter \(\zeta \) is then modeled, such that it can take \(k = n + 1 \) possible values \(\zeta \{0, 1/n, 2/n, \ldots, n/n \} \) that are assigned prior probabilities drawn from a discrete uniform distribution \(\pi(\zeta) \).

In this case, each model \(\zeta_k \) within the vector \(\{ \zeta_0, \ldots, \zeta_k \} \) has equal prior probability, and the expansion time parameters \(\tau_i \) are assigned to each of the \(n \) species conditional on \(\zeta_k \) and \(\tau(\zeta | \zeta_k) \).

Under the ABC scheme, this hierarchical Bayesian mixture model is used to simulate the data \(D \) in three steps: 1) generating the model \(\zeta_k \) from \(\pi(\zeta) \) with each \(\zeta_k \) value having equal probability \(P(\zeta_0), \ldots, \pi(\zeta_k) \); 2) generating the parameter vectors \(\phi_k \) and \(\tau_k \) from \(\pi(\phi) \) and \(\pi(\tau | \zeta_k) \); and 3) generating the data \(D \) from \(P(D | \phi_k, \tau_k) \).

Conditional on the
data D, this hierarchical ABC model then yields the approximate posterior probabilities of the focal hyperparameter ζ and parameter summaries $E(\tau), \tau$, and $\text{Var}(\tau)/E(\tau)$, while allowing other taxon-specific parameters to be drawn independently for each taxon. For an analysis involving n taxa, these taxon-specific parameters ϕ include the n current effective population sizes $\{N_1, \ldots, N_n\}$ drawn from a uniform prior $P(N_k) = \sim U(N_{\text{min}}, N_{\text{max}})$, the n expansion magnitudes $\{\varepsilon_1, \ldots, \varepsilon_n\}$ drawn from a uniform prior $P(\varepsilon_k) = \sim U(\varepsilon_{\text{min}}, \varepsilon_{\text{max}})$, and the n mutation rates $\{\mu_1, \ldots, \mu_n\}$ that are in turn drawn from a uniform prior $P(\mu_k) = \sim U(\mu_{\text{min}}, \mu_{\text{max}})$, with each locus-specific mean chosen according to the data and estimates based on the literature (table 3, Nabholz et al. 2008). With regard to each taxon’s expansion times $\tau = \{\tau_1, \ldots, \tau_{|1-\zeta|n}\}$, the $\| (1-\zeta) n \|$, independently expanding taxa are each independently and randomly assigned an expansion time from the uniform prior $P(\tau_n) = \sim U(\tau_{\text{min}}, \tau_{\text{max}})$, whereas the $\| n_\zeta \|$, taxa synchronously coexpanding are assigned a single τ, that is randomly drawn from the same uniform $\sim U(\tau_{\text{min}}, \tau_{\text{max}})$ ($\| \cdot \|$ notation specifies the integer nearest the number within).

Importantly, all n taxa experience an instantaneous expansion of magnitude ε_k at τ_k, $\tau = \{\tau_1, \ldots, \tau_{|1-\zeta|n}\}$, and τ_k times $\tau_k = \{\tau_1, \ldots, \tau_{|1-\zeta|n}\}$ is $(\varepsilon N)_k < N_k$ as depicted in figure 1 under the three different hypothetical scenarios of $\zeta = 1.0, 0.4, 0.0$, respectively. As a practical way to estimate the hyperparameter model indicators for $\zeta_{0.0} \ldots \zeta_{1.0}$ from the data, we choose the hyperprior $P(\zeta_k)$ to be a simple discrete uniform prior $P(\zeta_k) \equiv 1/k$ to favor all models equally and where the posterior is proportional to the likelihood $\pi(\zeta, \tau, \phi \mid D) \propto P(D \mid \zeta, \tau, \phi) = P(D \mid \phi, \tau) \pi(\phi) \pi(\tau) \pi(\zeta)$. In this case, there is one model ζ_k for each number of possible taxa coexpanding, such that if there are 100 taxa, then there are 101 models of ζ_k.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig6}
\caption{Error estimates from simulation validation of the hABC estimator of model index of community congruence ζ using local linear regression (panel A), simple rejection (panel B), τ, coexpansion time (panel C), and $\text{Var}(\tau)/E(\tau)$ time dispersion index of all expansion times (panel D). A set of 100 PODs was generated for five different levels of community congruence; true $\zeta = 1.0$ where all species expanded in a synchronous pulse, true $\zeta = 0.0$ where all species expanded randomly, and intermediate levels of synchronous and asynchronous expansion $\zeta = 0.25, 0.5, 0.75$. Each set of 100 PODs was based on the sampling and priors of 32 Australian bird populations with expansion time randomly drawn from the prior $\Pr(\tau) = U(1,000, 200,000)$.}
\end{figure}
Using this hABC approach, we compress an observed multitaxon data set into a summary statistic vector (D^*) and condition on D^* to obtain $C_25/\pi(\zeta, \tau_1, \phi | D^*)$, the approximate joint posterior probabilities of the expansion times τ_1 (summarized by posterior estimates of $E(\tau)$, $\text{Var}(\tau)/E(\tau)$) and ζ, the proportion of the taxon assemblage that expanded synchronously. In this case, the data consist of a sample of multiple alleles from a single locus from each of n taxa assumed to be panmictic.

Multitaxa coalescent simulations were performed using a python script that combined single taxa simulations and summary statistics from Bayes Serial Simcoal (Anderson et al. 2005) into a single file and calculates the multispecies summary statistics. Python scripts for the simulations are available at https://github.com/UH-Bioinformatics/hBayeSSC (last accessed June 16, 2014).

Summary Statistics
Following our objectives of quantifying temporal patterns of coexpansion, we construct multispecies summary statistics that are based on four summary statistics that are known to be correlated with demographic expansion, including number of haplotypes, haplotypic diversity, nucleotide diversity, and Tajima’s D. To ensure that the summary statistic vector D, used for the ABC procedure, is independent of the ordering of the data configuration, and to reduce the dimensionality in D, we use the first four sample moments of these four summary statistics calculated on each of the four summary statistics across the n taxa. Specifically, we use the mean, variance, skewness, and kurtosis of each of these four summary statistics thereby yielding a vector D consisting of 16 order-independent multitaxa summary statistics. To initially explore the statistical behavior of the 16 components of D^*, we simulated data from 50 taxa and a prior approximately $U(1,000, 500,000)$ for τ under models $\zeta = 0.0$ and $\zeta = 1.0$. These conditions demonstrated the summary statistics to have differing distributions under these two models, a favorable condition for summary statistic selection in ABC (supplementary figs. S1 and S2, Supplementary Material online; Marin et al. 2012).

Fig. 7. Posterior estimates of hyperparameter ζ and parameter summaries τ, and $\text{Var}(\tau)/E(\tau)$ conditional on data from the subset of 26 Australian bird populations that were identified by the PCA to have synchronously coexpanded. The ABC posterior distributions indicate that these 26 populations expanded synchronously (panels A and B) approximately 33,000 years ago (panel D) during Marine Isotope Stage 3. Panel C depicts the first two principal components calculated from the 16 summary statistics calculated from the 32 Australian avian populations. The tightest cluster of 26 species was subsequently tested as a putative subset of species that synchronously coexpanded.
hABC Estimation

For obtaining the ABC joint posterior of ζ_p and the summaries of the n expansion times ($E(\tau)$, τ_v, $\text{Var}(\tau)/E(\tau)$), we use rejection sampling to identify the 10,000 closest Euclidean distances between D^* and D_i calculated from 2.0 \times 10^6 random draws from each of the models $P(\zeta_p) = U(\zeta_{p,a} \ldots \zeta_{p,b})$ with equal prior probability. After a second step of rejection sampling to identify the 1,000 closest Euclidean distances between D^* and D_i we fit a local linear regression model to these posterior draws and applied this model to these remaining 1,000 acceptances to obtain an adjusted estimate of the joint posterior probability of $E(\tau)$, τ_v, $\text{Var}(\tau)/E(\tau)$, and ζ_p using functions available from the R package abcr (Csilléry et al. 2012). The local linear adjustment leads to improved estimation over estimates obtained by simple rejection sampling (fig. 6A and B). For ζ_p, we then back-transform the adjusted estimates to the closest value contained in the discrete uniform prior $P(\zeta_p)$ due to local linear regression leading to adjusted values of ζ that are not contained in the prior. For example, if the prior contains 0, 1/50 = 0.02, 2/50 = 0.04, ..., 50/50 = 1, and the parameter value sampled in the posterior after the regression adjustment is 0.025, this value is set to 0.02 (1/50).

Simulation Cross-Validation of ABC Estimation

The development of novel ABC methods require careful examination of bias and accuracy, and especially in the case of using ABC for model estimation, these developments must go hand in hand with validating simulation experiments (Cook et al. 2006; Bertorelle et al. 2010; Cornuet et al. 2010; Csilléry et al. 2010; Robert et al. 2011). To this end, we first simulated 10-species and 50-species models, while varying the priors for expansion times using a $P(\tau_{\text{min}}, \tau_{\text{max}})$ of $U(1,000, 100,000)$ and $U(1,000, 500,000)$ generations. The sample configuration of the 10 and 50 species consisted of 40 sequences of 800 bp of single-locus mtDNA data and a fixed locus mutation rate of 8×10^{-5}.

Initially, the prior distribution for ζ_p, $P(\zeta)$, only considered the two extreme values of $\zeta = 0.0$ and $\zeta = 1.0$, by simulating 500,000 prior draws from these two models. We then independently simulated 100 PODs (Bertorelle et al. 2010) from each of these two models and then used the ABC procedure to yield the 1,000 closest Euclidean distances between each PODs’ D^* and D_i calculated using the data generated from each of the 500,000 prior draws and used this to approximate the posterior probabilities of $\zeta = 0.0$ and $\zeta = 1.0$ for each estimate. Additionally, we used the Bayes Factor $P(\zeta = 0.0 | D^*)/P(\zeta = 1.0 | D^*) = P(\zeta = 0.0)/P(\zeta = 1.0)$ or $P(\zeta = 1.0 | D^*)/P(\zeta = 0.0 | D^*) = P(\zeta = 1.0)/P(\zeta = 0.0)$ (Kass and Raftery 1995) and the associated Jeffreys’ scale (Jeffreys 1961) to gauge one’s support for either history ($\zeta = 0.0$ or $\zeta = 1.0$). As an additional assessment, we estimated $\text{Var}(\tau)/E(\tau)$ and $E(\tau)$ from 100 PODs conditional on $\zeta = 0.0$ and $\zeta = 1.0$, and either of the two numbers of populations (10 and 50) and priors for $P(\tau) = U(1,000, 100,000)$ and $U(1,000, 500,000)$.

Detecting Poor Model Fit with Graphical Checks

We used the samples from the prior to check that our model priors could generate summary statistics similar to those calculated from PODs generated from alternative models (Cornuet et al. 2010). We performed a PCA using the “prcomp” function in R (R Development Core Team 2008) on the 16 multitaxa summary statistics from each of 100 PODs simulated from our hyperprior conditional on $\zeta = 0.4$ given a history of 15 coexpanding taxa at 1,000–100,000 generations before present and 35 taxa expanding at independent times and 100 PODs generated from three alternative model priors: 1) constant—15 taxa coexpanding at 1,000–100,000 generations before present and 35 taxa not expanding; 2) declining—15 taxa coexpanding at 1,000–100,000 generations before present and 35 taxa declining at 1,000–100,000 generations before present; and 3) two pulse—35 taxa coexpanding at 30,000 generations before present and 15 taxa coexpanding at 90,000 generations before present. For the graphical checks, we specifically focused on PC1 and PC2 for comparison.

Pleistocene Expansion Times in Australian Avian Populations

We apply our method to a set of 32 avian populations distributed from across the Australian continent, most of which have been previously published and analyzed (table 3). Each population consists of a monophyletic cluster within which the population can be considered to be demographically panmictic. Each population putatively expanded from a single refugium during the Pleistocene, and our method attempts to discern if any of them coexpanded temporally without making any spatial assumptions or inferences. Following the general hierarchical ABC procedure, we simulated from the discrete uniform prior of $P(\zeta) = U(\zeta_{p,a} \ldots \zeta_{p,b})$, with 200,000 simulations from each of the 33 coexpansion models, which ranged from 0 to 32 species coexpanding at time τ, (total 6.6 million simulations). Following this hABC structure, τ, and $\tau_a = [\tau_1, \ldots, \tau | 1/(1-\zeta))]$ are randomly drawn from the uniform prior $P(\tau) = U(1,000, 200,000)$. Likewise, the effective size N_i of each of the 32 contemporary populations is independently drawn from a species-specific uniform prior $U(N_{\text{e, min}}, N_{\text{e, max}})$ that instantaneously expands from an effective population e_i its size at time τ, or time $\tau_a = [\tau_1, \ldots, \tau | (1-\zeta))]$ (Nabholz et al. 2008). After 6.6×10^5 simulated random draws from the prior, the ABC filter of 1,000 closest Euclidian distances between observed D^*, and the 6.6×10^5 simulated values of D, are retained. Subsequently, we fit a local linear regression model to these posterior draws and apply this model to obtain an adjusted estimate of the joint posterior probability of ζ_p, $E(\tau)$, τ_v, and $\text{Var}(\tau)/E(\tau)$. To further ascertain our ability to estimate the number of coexpanding populations, we estimated ζ, $E(\tau)$, τ_v, and $\text{Var}(\tau)/E(\tau)$ from sets of 100 PODs that were drawn from $\zeta = 0.0$, $\zeta = 0.25$, $\zeta = 0.5$, and $\zeta = 1.0$. We used this expanded hABC estimation to our Pleistocene data to estimate effective population sizes and expansion times for each of the 32 contemporary populations (Cornuet et al. 2010). We also used this hABC approach to estimate expansion times using the data from the two substantially different climate conditions during the Pleistocene: 1) a constant 50% increase in the range of climatic conditions during the Pleistocene and 2) a declining 50% decrease in the range of climatic conditions during the Pleistocene.
<table>
<thead>
<tr>
<th>Taxa</th>
<th>No. Samples</th>
<th>No. Base Pairs</th>
<th>Mutation Rate Prior (%/My)</th>
<th>Nucleotide Diversity</th>
<th>No. Haplotypes</th>
<th>Haplotypic Diversity</th>
<th>Tajima's D Value</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymnorhina tibicen clade A</td>
<td>1,153</td>
<td>590</td>
<td>13–17</td>
<td>0.001810603</td>
<td>46</td>
<td>0.875974</td>
<td>-0.066733</td>
<td>0.557</td>
</tr>
<tr>
<td>Pomatostomus temporalis clade A</td>
<td>84</td>
<td>399</td>
<td>13–17</td>
<td>0.010191312</td>
<td>21</td>
<td>0.849971</td>
<td>-0.261851</td>
<td>0.477</td>
</tr>
<tr>
<td>Bamardus zonarius clade A</td>
<td>11</td>
<td>1,036</td>
<td>0.6–10</td>
<td>0.000491502</td>
<td>3</td>
<td>0.47727</td>
<td>-0.778153</td>
<td>0.311</td>
</tr>
<tr>
<td>B. zonarius clade B</td>
<td>70</td>
<td>1,036</td>
<td>0.6–10</td>
<td>0.00366875</td>
<td>13</td>
<td>0.701863</td>
<td>-1.44079</td>
<td>0.056</td>
</tr>
<tr>
<td>Malurus splendens clade A</td>
<td>63</td>
<td>985</td>
<td>2.8–4.8</td>
<td>0.00979204</td>
<td>28</td>
<td>0.856631</td>
<td>-0.304745</td>
<td>0.461</td>
</tr>
<tr>
<td>Entomyzon cyanotis clade A</td>
<td>6</td>
<td>1,032</td>
<td>2.8–4.8</td>
<td>0.055232558</td>
<td>4</td>
<td>0.8</td>
<td>-1.5207</td>
<td>0.001</td>
</tr>
<tr>
<td>Platycercus elegans clade A</td>
<td>82</td>
<td>935</td>
<td>0.6–1.0</td>
<td>0.00308665</td>
<td>28</td>
<td>0.841012</td>
<td>-1.50608</td>
<td>0.054</td>
</tr>
<tr>
<td>M. lamberti clade A</td>
<td>63</td>
<td>969</td>
<td>2.8–4.8</td>
<td>0.007084969</td>
<td>39</td>
<td>0.950333</td>
<td>-1.26882</td>
<td>0.084</td>
</tr>
<tr>
<td>Eopsaltria australis clade A</td>
<td>53</td>
<td>1,002</td>
<td>2.8–4.8</td>
<td>0.001715967</td>
<td>18</td>
<td>0.716981</td>
<td>-2.28436</td>
<td>0</td>
</tr>
<tr>
<td>E. australis clade C</td>
<td>44</td>
<td>1,002</td>
<td>2.8–4.8</td>
<td>0.002325159</td>
<td>18</td>
<td>0.900634</td>
<td>-1.15957</td>
<td>0.1</td>
</tr>
<tr>
<td>Cracticus quoyi clade A</td>
<td>30</td>
<td>630</td>
<td>2.8–4.8</td>
<td>0.006871009</td>
<td>8</td>
<td>0.770115</td>
<td>1.05393</td>
<td>0.879</td>
</tr>
<tr>
<td>Gliciphila melanops clade A</td>
<td>27</td>
<td>865</td>
<td>2.8–4.8</td>
<td>0.005643745</td>
<td>18</td>
<td>0.94302</td>
<td>-1.3904</td>
<td>0.092</td>
</tr>
<tr>
<td>Cinclusa cincliazu clade A</td>
<td>18</td>
<td>884</td>
<td>2.8–4.8</td>
<td>0.006750362</td>
<td>13</td>
<td>0.901961</td>
<td>-1.74447</td>
<td>0.025</td>
</tr>
<tr>
<td>Cl. cincliazu clade B</td>
<td>9</td>
<td>884</td>
<td>2.8–4.8</td>
<td>0.006473102</td>
<td>8</td>
<td>0.972222</td>
<td>-0.414598</td>
<td>0.399</td>
</tr>
<tr>
<td>M. leucopterus clade A</td>
<td>34</td>
<td>1,007</td>
<td>2.8–4.8</td>
<td>0.004848793</td>
<td>18</td>
<td>0.932264</td>
<td>-1.47934</td>
<td>0.051</td>
</tr>
<tr>
<td>Phitornorhynchus violaceus clade A</td>
<td>16</td>
<td>1,002</td>
<td>2.8–4.8</td>
<td>0.002170229</td>
<td>9</td>
<td>0.925</td>
<td>-0.750111</td>
<td>0.235</td>
</tr>
<tr>
<td>Pt. violaceus clade B</td>
<td>78</td>
<td>1,002</td>
<td>2.8–4.8</td>
<td>0.004785263</td>
<td>47</td>
<td>0.968698</td>
<td>-1.98111</td>
<td>0.003</td>
</tr>
<tr>
<td>M. melanochroa clade A</td>
<td>14</td>
<td>467</td>
<td>2.8–4.8</td>
<td>0.000611808</td>
<td>3</td>
<td>0.274275</td>
<td>-1.48074</td>
<td>0.138</td>
</tr>
<tr>
<td>M. melanochroa clade B</td>
<td>15</td>
<td>467</td>
<td>2.8–4.8</td>
<td>0.006322015</td>
<td>7</td>
<td>0.838095</td>
<td>-0.490602</td>
<td>0.379</td>
</tr>
<tr>
<td>Biziina lobata clade A</td>
<td>16</td>
<td>373</td>
<td>13–17</td>
<td>0.003024194</td>
<td>3</td>
<td>0.575</td>
<td>0.708323</td>
<td>0.783</td>
</tr>
<tr>
<td>Bi. lobata clade B</td>
<td>135</td>
<td>373</td>
<td>13–17</td>
<td>0.002248703</td>
<td>8</td>
<td>0.413709</td>
<td>-1.41781</td>
<td>0.047</td>
</tr>
<tr>
<td>C. nigrogularis clade A</td>
<td>55</td>
<td>867</td>
<td>2.8–4.8</td>
<td>0.001648162</td>
<td>20</td>
<td>0.642424</td>
<td>-2.42327</td>
<td>0</td>
</tr>
<tr>
<td>Chalcoetes minutillus clade A</td>
<td>48</td>
<td>1,497</td>
<td>2.0–4.0</td>
<td>0.004713327</td>
<td>27</td>
<td>0.953014</td>
<td>-1.10275</td>
<td>0.147</td>
</tr>
<tr>
<td>Anas gracilis clade A</td>
<td>72</td>
<td>609</td>
<td>13–17</td>
<td>0.013997121</td>
<td>52</td>
<td>0.986307</td>
<td>-1.05892</td>
<td>0.149</td>
</tr>
<tr>
<td>Stipitus malachurus clade A</td>
<td>75</td>
<td>281</td>
<td>2.8–4.8</td>
<td>0.01200259</td>
<td>13</td>
<td>0.824144</td>
<td>-0.71101</td>
<td>0.254</td>
</tr>
<tr>
<td>S. malachurus clade B</td>
<td>4</td>
<td>281</td>
<td>2.8–4.8</td>
<td>0.044483986</td>
<td>2</td>
<td>0.5</td>
<td>-0.858583</td>
<td>0.181</td>
</tr>
<tr>
<td>P. halli clade A</td>
<td>20</td>
<td>403</td>
<td>13–17</td>
<td>0.002638109</td>
<td>6</td>
<td>0.573684</td>
<td>-1.18349</td>
<td>0.115</td>
</tr>
<tr>
<td>P. halli clade B</td>
<td>5</td>
<td>403</td>
<td>13–17</td>
<td>0.00472057</td>
<td>5</td>
<td>1</td>
<td>-0.410175</td>
<td>0.526</td>
</tr>
<tr>
<td>Pezoporus wallacei clade B</td>
<td>22</td>
<td>849</td>
<td>0.6–1.0</td>
<td>0.000504492</td>
<td>4</td>
<td>0.547619</td>
<td>-0.849505</td>
<td>0.268</td>
</tr>
<tr>
<td>Ch. basalis clade A</td>
<td>21</td>
<td>1,689</td>
<td>2.0–4.0</td>
<td>0.001438751</td>
<td>14</td>
<td>0.938095</td>
<td>-1.74716</td>
<td>0.022</td>
</tr>
<tr>
<td>Cl. punctatum clade A</td>
<td>11</td>
<td>884</td>
<td>2.8–4.8</td>
<td>0.002838338</td>
<td>8</td>
<td>0.890909</td>
<td>-1.90258</td>
<td>0.012</td>
</tr>
<tr>
<td>Phylidonyris novaehollandiae clade B</td>
<td>20</td>
<td>1,033</td>
<td>2.8–4.8</td>
<td>0.00462628</td>
<td>9</td>
<td>0.873684</td>
<td>-1.44806</td>
<td>0.043</td>
</tr>
</tbody>
</table>

*Species were identified by the PCA as a possible coexpansion subset. Loci and taxon-specific avian mutation rate prior based on Nabholz et al. (2008).
\[\zeta = 0.75, \quad \text{and} \quad \zeta = 1.0 \] and calculated the error as \(|(\text{true value} - \text{estimated value})|\).

Model Checking of the Prior and Posterior Predictive Distributions
As a goodness-of-fit check to ascertain whether the model and our chosen priors can produce the main features of the observed data and to check for prior sampling efficiency (Hickerson et al. 2014), we deployed a PCA on prior and posterior samples of the 16 summary statistics. Initially, we used the first two principal components of the summary statistics calculated from 1,000 random draws from the simulated prior distribution and 1,000 samples from the hABC posterior to compare with these first two components from the 32 avian population samples \((D^*)\). Second, we sample from the posterior predictive distribution (Gelman et al. 2004) by simulating 1,000 data sets using parameters from the 1,000 posterior samples. To this end, we used the same 16 summary statistics, the mean, variance, skewness, and kurtosis of the number of haplotypes, haplotypic diversity, nucleotide diversity, and Tajima’s \(D\) (“training” set) as well as an alternative set (“testing” set) that included the mean, variance, skewness, and kurtosis of the number of segregating sites and Fu’s \(F\) and again projected the first two principal components of the corresponding observed summary statistics in both cases.

Selecting Taxa with Shared History
After the posterior estimate of \(\zeta\) was obtained, given the observed \(D^*\) from 32 avian population samples, we used a PCA on the summary statistics to aide in selecting and testing which \((|P| \zeta |)\) populations coexpanded synchronously. Specifically, we calculated the first two principal components of the summary statistics calculated from 32 avian population samples. After recalculating \(D^*\) on a subset of populations that are closely clustered in the PCA, we then perform an hABC analysis to determine if this subset of populations plausibly coexpanded synchronously.

Supplementary Material
Supplementary figures S1 and S2 are available at Molecular Biology and Evolution online (http://www.mbe.oxfordjournals.org/).

Acknowledgments
The authors thank the Australian Center for Ecological Synthesis working group on Reconstructing Effects of Past Climate Change, including A. Cooper, J. Soubrier, L. Joseph, and V. Thompson. They also thank the editor and two anonymous reviewers for their insightful comments and suggestions that helped us improve the manuscript. This work was supported by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme, National Science Foundation, Division of Ocean Sciences (Award 1260169 to R.J. Toonen and B. Bowen) to Y.L.C. and by the National Science Foundation, Division of Environmental Biology (Awards 1253710 and 1343578) to M.J.H. Computational support was provided by the National Center for Research Resources (SP20RR016467-11) and the National Institute of General Medical Sciences (8 P20 GM 103466-11) from the National Institutes of Health. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575.

References

Joseph L, Wilke T. 2006. Molecular resolution of population history, systematics and historical biogeography of the Australian ringneck parrots Barnardius: are we there yet? Emu 106:49.

